Linear parabolic maps on the torus

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Parabolic Maps on the Torus

We investigate linear parabolic maps on the torus. In a generic case these maps are non-invertible and discontinuous. Although the metric entropy of these systems is equal to zero, their dynamics is non-trivial due to folding of the image of the unit square into the torus. We study the structure of the maximal invariant set, and in a generic case we prove the sensitive dependence on the initial...

متن کامل

On Planar Piecewise and Two-Torus parabolic Maps

We investigate properties and examples of iterated planar piecewise parabolic (PWP) maps, including those induced by two-torus parabolic maps and their inverses. PWP maps are areapreserving maps that have constant linearizations but only one eigenvector with eigenvalue one. We obtain necessary and sufficient conditions for a two-torus parabolic map to be invertible. For noninvertible PWP maps, ...

متن کامل

On Quantum Ergodicity for Linear Maps of the Torus

We prove a strong version of quantum ergodicity for linear hyperbolic maps of the torus (“cat maps”). We show that there is a density one sequence of integers so that as N tends to infinity along this sequence, all eigenfunctions of the quantum propagator at inverse Planck constant N are uniformly distributed. A key step in the argument is to show that for a hyperbolic matrix in the modular gro...

متن کامل

On Quantum Ergodicity for Linear Maps of the Torus

We prove a strong version of quantum ergodicity for linear hyperbolic maps of the torus (“cat maps”). We show that there is a density one sequence of integers so that as N tends to infinity along this sequence, all eigenfunctions of the quantum propagator at inverse Planck constant N are uniformly distributed. A key step in the argument is to show that for a hyperbolic matrix in the modular gro...

متن کامل

On Quantum Unique Ergodicity for Linear Maps of the Torus

The problem of “quantum ergodicity” addresses the limiting distribution of eigenfunctions of classically chaotic systems. I survey recent progress on this question in the case of quantum maps of the torus. This example leads to analogues of traditional problems in number theory, such as the classical conjecture of Gauss and Artin that any (reasonable) integer is a primitive root for infinitely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 1999

ISSN: 0375-9601

DOI: 10.1016/s0375-9601(99)00465-x